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Abstract. The fundamental advantage in using Monte Carlo methods for burnup calculations is 
to formulate an effective optimal fuel management strategy for the TRR-1/M1 research reactor. 
The core management study has been performed by utilizing the essentially parameters including 
multiplication factor, power peaking, neutron flux and burnup calculation based on the Monte 
Carlo calculation. The fuel element burnup was calculated after reshuffling the reactor core. The 
fuel cycle length and core parameters such as core excess reactivity, neutron flux, axial and radial 
power factors and other parameters are determined. The core excess reactivity was calculated as 
a function of burnup. The maximum excess reactivity shall not exceed 6.3% Δk/k. The maximum 
fuel temperature shall not exceed 930 ºC during steady-state operation. Typically, a core loading 
operated with the maximum burnup between 100 to 200 MWD depending on the utilization 
requirements. The thermal neutron flux in the irradiation positions is within the order of 1011 - 
1013 n/cm2-sec. The study gives valuable results into the behaviour of the TRR-1/M1 research 
reactor and will ensure optimized utilization and operation of the reactor during its life time. It 
will establish the strategic planning for fuel management in the reshuffling and reloading 
schemes patterns and its safe implementation in the future. 

1. Introduction  
The 2 MW TRIGA MARK III research reactor referring as TRR-1/M1 was commissioned at the 
Thailand Institute of Nuclear Technology.  The reactor was designed to implement several fields of 
basic nuclear research, gem stone irradiation, educational and training and production of radioisotopes 
for its uses in agriculture, industry and medicine. The reactor is a light water cooled, designed for 
operation at a steady-state power level of 1.2 MW. An outstanding feature of the TRIGA reactor is its 
inherent safety feature resulting from the large prompt negative temperature coefficient of reactivity of 
its UZrH fuel-moderator material. The objective of the study is to determine an optimal fuel management 
strategy for most effective utilization using burnup calculation from fuel elements loaded in the initially 
in the TRIGA core. The basic objectives of reactor core management are to achieve in high fuel 
utilization and safe and efficient rated power operation. This requires strategic planning in fuel 
reshuffling and reloading fuel pattern with the safe implementation in the operational limits and 
conditions. Presently, it is important to know the individual fuel burnup for the reshuffling and design 
core pattern of the TRR-1/M1 reactor to ensure optimum utilization of fuel. Therefore, it can contribute 
to safe and economic use of the TRR-1/M1 reactor. The core management and burnup study has been 
performed by utilizing four basic types of information: criticality (keff), power peaking, neutron flux and 
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power distributions and fuel element burnup calculations. These involve the relationship of core as a 
function of burnup. The fuel depletion and burnup calculations using MCNPX were used for core 
management. Several researches studied the fuel burnup calculation using different computer codes such 
as MCNPX [1], WIMS-D5 [2], TRIGAP2 [3], MONTEBURNs [4], and BUCAL1 [5]. They had 
performed burnup analysis for several reactor core benchmark and many reactor parameters had been 
calculated. Various patterns for distribution of fuel rods have been considered in order to achieve high 
fuel burnup and reasonably flat power distribution according to the safety limit in operation of the 
reactor. The MCNPX computer code has been used to determine of individual fuel element burnup, 
calculate of core lifetime and formulate of optimal fuel management strategy. 

2. Computational Methods 

2.1 MCNPX 2.6.0 Computer Code 
The TRR-1/M1core consists of fuel elements arranged in a concentric hexagonal array within the core 
shroud. Elements are arranged in seven concentric rings and the spaces between the rods are filled with 
water. The lattice was modeled as a hexagonal prism, solids with eight faces (Figure 1). The fuel 
elements were modeled with homogeneous mixture of uranium-zirconium hydride alloy with the 
uranium-to-zirconium atom ratio of 1.6 to 1.7. The uranium in the uranium-zirconium hydride mixture 
is enriched to approximately 20% U-235. There are two types of fuel elements loaded in TRR-1/M1 
core including 8.5% uranium by weight type and 20% uranium by weight type. The 20 wt% fuel element 
is a mixture of uranium-erbium-zirconium-hydride (UErZrH) alloy containing approximately 0.5 wt% 
erbium. The core configuration in Figure 1 consists of 20 wt% fuel elements and 8.5 wt% fuel elements 
including FFCRs, 3 locations of neutron detectors (position) and 10 locations of in-core irradiation 
facilities (including pneumatic transfer system) for in-core utilization. The burnup calculations were 
performed using MCNPX which is a general purpose Monte Carlo radiation transport code designed to 
track many particle types over broad ranges of energies and comparing with MVP-BURN computer 
program which is continuous energy and multigroup Monte Carlo method developed by Japan Atomic 
Energy Agency (JAEA).  
 

 
Figure 1. Fuels and FFCRs with 20 wt%. and 8.5wt%. fuel elements. 

The fuel element is approximately 3.73 cm in diameter and 73.15 cm in overall length and the active 
part of the fuel element is 38.1 cm long. The power level of the reactor is controlled with five control 
rods: The TRR-1/M1 uses five control rods; a safety rod, a regulating rod, two shim rods and a safety-
transient rod. The regulating, shim, and safety rods are sealed 304 stainless steel tubes approximately 
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109 cm long by 3.43 cm in diameter in which the uppermost 16.5 cm section is an air void and the next 
38.1 cm is the neutron absorber (boron carbide in solid form). The control rods were explicitly modeled 
along the active length containing three vertical sections of boron carbide, fuel follower, and void region. 
The central thimble was considered to be filled with water and the pneumatic tube was considered to be 
void. The fuel elements figures are presented in Figure 2a and 2b. 

(a) (b) 

 

 

Figure 2. Fuel element (horizontal Cross Section (a) and vertical cross section (b)). 

2.2 Burnup Calculation 
MCNPX 2.6.0 [6] includes many new capabilities, particularly in the areas of transmutation, burnup [7] 
and delayed particle production [8]. CINDER data library is required for burnup and depletion 
calculations [9]. Neutron transmutation, fission, and radioactive decay are included in the modeling of 
the production and removal terms for each isotope of interest. For a fueled region, neutron transmutation, 
fuel depletion, fission-product poisoning, actinide generation, burnable poison loading and depletion 
effects are included in the calculation. The MCNPX 2.6.0 uses the fourth order Rung Kutta method [10] 
with the predictor–corrector approach for the resolution of the depletion equation. Using MCNPX can 
calculate for standard burnup calculation, burnup calculation followed by a space of time of cooling, 
burnup calculation with shuffling of fueled regions and burnup calculation with reloading new fresh 
fuels. Two groups of nuclides under consideration are: actinides that contain heavy metal nuclides and 
their decay daughters; and fission products produced by fissions and their decay/capture daughters. 

3. Determination of Core Lifetime 
The burnup throughout an expected life cycle of the reference core is analyzed. The analysis was 
performed by MCNPX which uses predictor-corrector burnup methodology. For this analysis, each fuel 
element was designated as a burnup zone to accurately representing the variation in burnup rate for each 
fuel element. The burnup calculation was done at the full power of 1.2 MW. The core excess reactivity 
was calculated as a function of burnup. The core was burnt without changing the loading pattern. 
Typically, a core loading would be operated with the maximum burnup of between 100 MWD and 200 
MWD depending on the utilization requirements and other appropriate schedules. In the analysis, the 
core is operated in one cycle of 200 MWD. The core excess reactivity of the core loading as a function 
of burnup is shown in Figure 3. As it was calculated by MCNPX, the begin of cycle (BOC) excess 
reactivity is 7.07% ∆k/k and it drops to 5.12% ∆k/k shortly after the burnup. This sharp core excess 
reactivity drop is caused by the buildup of 133Xe and 149Sm in the fuel and the reactivity loss due to 
heating of fuel. It is also observed that the burnup rate of the first 100 MWD is higher than that of the 
second half. 
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Figure 3. Core excess reactivity in relation to burnup (MWD) at Xe and 
Sm equilibrium.  

At the initial burnup time a sharp loss of reactivity because of the build-up of 133Xe and 149Sm. The 
concentrations of 133Xe and 149Sm fission products poisons influence the reactivity and eventually reach 
equilibrium for 133Xe and 149Sm as presented in Figure 4. The analysis calculated the Xenon reactivity 
feedback of 1.95% ∆k/k at full power. After Xenon equilibrium, the reactivity loss of the TRR-1/M1 is 
found to be 2.18% ∆k/k.  

 
Figure 4. 133Xe and 149Sm buildup as a function of core burnup. 

The relative radial power factor of the fuel and fuel follower elements are presented in Figure 5. The 
calculations are performed from BOC to end of cycle (EOC). Radially, it seems that both BOC and EOC 
distributions, the maximum power factors are found in B ring because of the relatively higher 
thermalization of neutrons in the central region of the core. At BOC, for each ring, the power factors 
have a cosines shape that peaks at the fuel elements further than the control rods, such as for B ring the 
maximum is found to be 2.03 at B6 and for C ring the maximum is found to be 1.84 at C9. The amplitude 
of the shape is higher in rings B to D due to the influence of the control rods which are withdrawn with 
25.00 cm. At EOC, the power factors values of rings B to D decrease due to high burnup values at this 
region of the core and the cosines shape disappear partially resulting from the new control rods positions 
that became roughly fully withdrawn approximately 28.58 cm. EOC/BOC ratios show that, the power 
factors of fuel elements nearest to CRs become higher than in BOC due to the neutron flux change while 
withdrawing the CRs. 
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Figure 5. Radial power factors distribution within the fuel and fuel 
follower elements of TRR-1/M1. 

Figure 6 and 7 present the axial thermal fluxes versus burnup at the central thimble (CT) and G33 
irradiation positions of TRR-1/M1 reactor, respectively. For CT, it shown that the thermal flux is 
flattening as a function of burnup resulting in a decrease of the peak value between BOC and EOC, 
because of the high burnup values at the core center and the CRs positions. The peak value shift upward 
from 34 cm to 30 cm above the core center line. The calculation shown that the thermal neutron flux 
peaks at the central thimble and decrease in D ring and continue to fall up to F and G ring.   

 
Figure 6. Thermal neutron flux at the BOC and EOC at CT position of TRR-1/M1. 

For G33 irradiation position, the thermal flux is flattening with increasing of the peak value at EOC. 
This is because of more of the fissile material (235U) is depleted at the inner region of the core (B and C 
rings), more power must be supplied by the fuel elements located at the core periphery since the total 
power is the same (1.2 MW), therefore, a small increase of the thermal flux at the outer part of the core 
as shown in Figure 7. 
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Figure 7. Thermal neutron flux at the BOC and EOC at G33 irradiation position 
of TRR-1/M1. 

4. Comparison between MCNPX and MVP 
The individual fuel burnup for selected standard fuel element (fuel number 8558) was compared by the 
MCNPX and MVP code. The cross section library for MVP calculation was derived from JENDL3.3 
[11]. The calculated individual burnup (% 235U burn) at the end of core in different core number during 
the years of 1977–2018 (total burnup was 2211.40 MWD) is shown in Figure 8. A good agreement was 
less than ±8% difference which was observed between the MCNPX and MVP. It provides the confidence 
for MCNPX and MVP calculations.  

 
Figure 8. Comparison of the individual TRIGA fuel burnup (%235U) calculated 
by MCNPX and MVP at EOC. 

5. Conclusion 
The burnup calculation of TRR-1/M1 fuel elements was performed using MCNPX to study the burnup 
dependent neutronic parameters for the 1.2 MW TRR-1/M1 reactor. The fuel management strategy was 
planned according to the burnup calculation. The plan was that the fuel elements were shuffled every 
year after 10-15% burnup of initial 235U which will increase the core life time after fuel rearranged at a 
certain period of operation. Particularly the highest burnt elements were replaced by relatively least 
burnt elements in the core periphery. The optimal in core fuel management strategy of TRR-1/M1 will 
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contribute the safe operation and better utilization of TRR-1/M1 fuel. The specific parameters included 
excess reactivity, spatial flux, keff, Xe and Sm equilibrium and radial power density distribution. The 
radial power distribution is strongly affected by burnup due the CR’s positions to compensate the loss 
of reactivity. Analysis of the thermal neutron fluxes at CT and G33 irradiation positions versus burnup 
shows that the thermal flux in CT position can be decrease due to burnup and it can be increase slightly 
in G33 due to the more power which supplied by fuel elements in the core periphery in order to reach 
the full power at the end of life. The results from the MCNPX and MVP computer code [12. 13] were 
found to be in good agreement; therefore, the simulation model can be used as reference with confidence 
for TRR-1/M1 core configuration.   
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